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Forced vibrations of a railway track excited at the cut-o! frequency of one of its wave
modes are examined theoretically, numerically and experimentally in the frequency range
from 5 to 50 kHz. The background of this paper is the new idea of using the local vibration
zone of the rail close to the excitation to detect passing train wheels. An important
parameter which in#uences this local vibration zone is system damping. The determination
of a new quality factor to characterize damping of a system which both resonates and
interacts with travelling waves is "rst studied in the case of a beam on a viscoelastic
foundation. Some key di!erences compared with a single-degree-of-freedom (s.d.o.f.)
mechanical oscillator are pointed out and an adopted damping measurement method is
suggested. The phenomenological behavior of higher vibration modes is then investigated
using a model of several elastically connected beams referred to as the multiple-modemodel.
Modal damping is introduced and the model is studied both in a continuous and in
a discretely supported con"guration. Both localized and non-localized modes are observed
in the latter case. The cut-o! frequencies and mode shapes are also determined
experimentally at a real test track using a scanning laser interferometer and show good
agreement with numerical calculations. The spatial behavior of the measured system
response at the test track corresponds well to the e!ects predicted by the multiple-mode
model. Damping measurements are performed and the quality factors of several modes are
determined and discussed. � 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

This paper examines the forced vibration response of a railway track excited at the cut-o!
frequency of one of its wave modes. At these frequencies, a local vibration zone builds up
close to the excitation in the presence of damping. Often these frequencies are also called
transverse resonance frequencies. The background of this study is the idea to develop
a sensor which detects train axles by measuring the interaction between passing train wheels
and this local vibration. Devices for detecting the presence of railroad cars are called rail
contacts and are used, e.g., for mobile warning systems to be employed at railway
construction sites to guarantee the safety of working sta!. Today's most often used rail
contacts are mechanical or optical switches or inductive sensors. All of these devices are
sensitive to certain interferences such as pollution or magnetic "elds, thus leaving a strong
industrial need for improvements.
The power spectrum of mechanical vibrations of the rail caused by passing trains shows

large signal amplitudes mainly below approximately 10}15 kHz. This implies that the
signal-to-noise ratio of a sensor which is based on forced rail vibrations can be improved by
using frequencies above 15 kHz. However, as the density of cut-o! frequencies increases
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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towards higher frequencies and as the mode shapes of the cross-sectional rail deformation
become more and more complicated, a technique must be developed which allows the
sensor to "nd vibration modes suitable for wheel detection.
Vibration modes are suitable for wheel detection if several conditions are met. First

of all, a local vibration zone must exist. For a strong interaction, the corresponding mode
shape must show a large vibration amplitude at the contact point between the wheel and
the rail. It is also required that the mode shape has no nodes at the running surface
along which a wheel could travel without being detected. Furthermore, the mechanical
reaction time of the vibration mode must be fast enough to detect wheels of fast travelling
trains.
This paper focuses on the forced vibration behavior of higher modes in railway tracks at

their cut-o! frequencies. The frequency range of this study is set to 5}50 kHz. The goal of
the study is to identify the parameters in#uencing the cut-o! frequency behavior. This
knowledge is necessary in order to develop a sensor which is capable of reliably "nding
suitable railmodes.
At frequencies above approximately 1500 Hz, the cross-section of the rail deforms

signi"cantly and the rail has its "rst cut-o! frequencies. Various concepts which take this
into account in regard to dynamic track modelling are found in the literature. The
development of mathematical track models is mostly motivated by the need to understand
and perhaps even solve practical problems arising from dynamic loads such as corrugation
of wheel and rail, noise and ground-borne vibration. Ripke and Knothe [1] used two
Timoshenko beams representing the head and the foot of the rail with an elastic coupling in
between. Scholl [2] calculated the dispersion relations of 11 wave modes up to a frequency
of 15 kHz by modelling the head, the web and the foot of the rail by plates of constant
thickness. Thompson [3] modelled a 10 m long section of the rail including sleepers, rail
pads and ballast as equivalent continuous layers of mass and sti!ness with "nite elements,
and then applied periodic structure theory to calculate the response of the in"nite system.
Strzyzakowski and Ziemanski [4] introduced an FEM cross-sectional solution together
with an analytical treatment in the longitudinal direction. Knothe et al. [5] compared
models of rails as published by Grassie et al. [6], Ripke and Knothe [1], Scholl [2] and
Strzyzakowski and Ziemanski [4] in the frequency range up to 15 kHz and thus established
the validity ranges of these models. The frequency limit of 15 kHz is considered to be
su$cient for the practical problems involving rails, as it represents the limit of human
hearing. Track models developed for these high frequencies are commonly based on the
assumption of a continuous structure, thus ignoring the discrete support on sleepers.
Damping e!ects are usually neither included nor discussed. No previously published study
has been found which suggests that advantage be taken of rail vibrations for a technical
application as in the proposed wheel detection concept.
The most important parameters regarding the dynamic response of the rail for this

application are the geometry and material properties of the cross-section, the system
damping and the parameters of the supports. These parameters include the sti!ness of the
support which depends on the type of pads and sleepers (i.e., wooden or concrete sleepers),
on ballast parameters, and on the geometry of the support (e.g., sleeper spacing).
The upper frequency limit of 50 kHz aimed at within this study is considerably higher

than the frequency range covered by present track models. The development of a detailed
"nite element model of the situation which has been examined would entail great expense
both regarding modelling and computational e!ort while hiding the respective in#uences of
the model parameters. Therefore, a di!erent approach is chosen in this study. In section 2,
the forced vibration response of a waveguide close to its cut-o! frequencies is studied using
analytical models. The section begins with a discussion of the damping characterization of
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a Bernoulli}Euler beam on a viscoelastic support. Higher vibration modes are then
included by studying a model of several elastically connected beams. The solution is derived
in a way which allows the implementation of modal damping. The model is studied in both
a continuously and a discretely supported con"guration. This model is later referred to as
the multiple-mode model. Ripke and Knothe [1] and, more recently, Wu and Thompson
[7, 8] used similar models with two Timoshenko beams representing the head and the foot
of the rail which are elastically connected. However, the elements of the multiple-mode
model suggested here should not be viewed as a valid representation of physical track
components. The multiple-mode model serves merely as a vehicle to qualitatively study the
e!ects of higher vibration modes at their cut-o! frequency as well as e!ects of discrete
supports.
Based on the knowledge gained from the multiple-mode model, the cut-o! frequencies

and mode shapes can be numerically predicted for a real track in an e$cient way. This is
shown in section 3 with reference to the corresponding literature.
The statements about the forced vibration behavior derived in the theoretical and

numerical part of this paper are then experimentally veri"ed by measurements performed
at a test track. The results of these measurements are presented and discussed in
section 4.
The investigation of the interaction between passing train wheels and the local vibration

is outside the scope of this paper. The applicability of the proposed wheel detection method
has been studied by Pfa$nger [9].

2. THEORETICAL CONSIDERATIONS

2.1. QBW-FACTOR OF A BEAM ON VISCOELASTIC FOUNDATION

Figure 1 shows a purely elastic Bernoulli}Euler beam on a continuous viscoelastic
foundation excited by a harmonic point force pL (z"0, t)"pei�� with angular frequency �.
The di!erential equation of this model in the case of harmonic motion is

EIu
�����

!���Au#i�c
�
u#s

�
(1#i�)u"0, (1)

where u"u(z, t) is the downward displacement, and subscripts after the comma denote
partial di!erentiation with respect to the designated variable. In equation (1) EI, � andA are
the #exural sti!ness, the mass per unit volume and the cross-sectional area of the beam,
respectively. The support has the sti!ness s

�
and the viscous damping constant c

�
per unit

length. In addition to viscous damping, hysteretic damping � is introduced by adding
a complex component i�s

�
to the support sti!ness.

By de"ning dimensionless time and space variables �"�
�
t and �"�z, equation (1) may

be put in the dimensionless form

w
�����!��w#2i��w#i�w#w"0, (2)
sc, cc p

z
EI, �, A 

Figure 1. Bernoulli}Euler beam on a continuous viscoelastic foundation with excitation force at z"0 m.
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where �
�
"�s

�
/�A, �"��s

�
/EI, �"c

�
/�4s

�
�A, w"(EI��/p)u and �"�/�

�
.

Considering steady-state solutions of the form

w(�, �)"bei�������, (3)

equation (2) is solved if the dimensionless wavenumber 	 satis"es the condition
	�"��!1!i(2��#�) giving four branches of the wavenumber.
Taking into account the radiation condition for �PR and the boundary conditions at

�"0 gives the forced vibration solution (4) for �*0 of an in"nite beam on a continuous
viscoelastic support,

w (�, �)"!�
�
	��(ie�i��#e���)ei��. (4)

The wavenumber is set to 	"��
	� 
ei�������	� in equation (4) using the absolute value 
	� 

and the argument arg(	�) of 	�.
The complex ratio of the displacement at the point of excitation to the exciting force is

called the direct receptance. The receptance of the studied system can be written as

�
�
"�2/4 
	
��e�i����	�����������. (5)

At the minimum of 
	
, the direct receptance reaches its maximum and only system damping
prevents the amplitude from increasing to in"nity. In the case of small damping parameters
� and �, the "rst approximation of the frequency, where the direct receptance is maximal, is
�"1 corresponding to �"�

�
. The frequency�

�
is called cut-o! frequency. In the absence

of damping, the entire system performs a synchronous motion and the amplitude tends
towards in"nity if excited at the cut-o! frequency �

�
.

The damping of a classical single-degree-of-freedom (s.d.o.f.) mechanical oscillator is
commonly characterized by the quality factor or Q-factor. One method to determine the
Q-factor of a s.d.o.f. system is to calculate Q"1/(�

�
!�

�
) where �

�
and �

�
are the two

dimensionless frequencies above and below the resonance frequency �"1, for which the
amplitude of the oscillation has dropped to 1/�2 of its resonance value respectively. At �

�
and �

�
the phase of the transfer function has shifted $�/4 compared with the phase at the

resonance frequency. The overall phase change of a classical s.d.o.f. mechanical oscillator
is �.
In the case of a Bernoulli}Euler beam on a viscoelastic foundation, the total phase shift of

the receptance is 3�/4. This di!erence compared with an s.d.o.f. oscillator indicates that the
concept of the Q-factor cannot be applied directly to characterize the damping behavior
of a system which includes wave propagation and which leads to a more appropriate
de"nition to be used in the case considered here.
At the cut-o! frequency �"1, the magnitude and phase of the receptance give


�
�

�
�

"�
�
(2�#�)�	� and arg(�

�
) 
 �
�

"!3�/4#3�/8. (6)

Motivated by the s.d.o.f. oscillator analysis consider now the receptance at the
frequencies �

�
and �

�
which satisfy the conditions

��
�
!1#(2��

�
#�)"0 and ��

�
!1!(2��

�
#�)"0. (7)

Taking into account the fact that the frequencies must be positive and in the case of small
damping parameters � and �, the "rst order approximations of the frequencies �

�
and �

�
are

�
�
"1!�!�/2 and �

�
"1#�#�/2. (8)
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Adding and subtracting $(2��
���

#�)G(2��
���

#�) to the solution of the wavenumber
gives

	(�
���
)"����

���
!1$(2��

���
#�)G(2��

���
#�)!i (2��

���
#�). (9)

By using relations (7) the wavenumber at the frequencies �
�
and �

�
can be rewritten as

	(�
���
)"��!(2��

���
#�)(i$1)"��2 ��(2��

���
#�) e�i��	�$�	��� (10)

giving amplitude and phase values of the receptance function as


�
�

�

���
"(1/��8) �

�
(2��

���
#�)��	� and arg(�

�
) 
�

���
"!3�/4#3�/8$3�/16. (11)

By ignoring parts of the order �� and ��, one can see from equations (11) that the

magnitude has dropped to 1/��8 and the phase has shifted $3�/16 at the frequencies �
�

and �
�
compared with the values at the cut-o! frequency. Let one de"ne the ratio between

the cut-o! frequency and (�
�
!�

�
) as the Q�-factor of the continuously supported

Bernoulli}Euler beam. The index stands for bending wave. The Q�-factor is related to the
system damping according to the following equation:

Q�"1/(�
�
!�

�
)"1/(2�#�). (12)

With this de"nition of the Q�-factor, the relation between the obtained quality factor
and the damping parameters of the system is analogous to the corresponding Q-factor
de"nition of a s.d.o.f. mechanical oscillator.
It can be shown by solving the free vibration response of the system that the time constant

t1/e, after which the amplitude of the vibration has decayed to e�� of its initial value, is
related to the Q�-factor according to equation (13). Again, this is analogous to the
corresponding relation in the case of an s.d.o.f. mechanical oscillator,

t
�	�

"2Q�/�
�
. (13)

2.2. HIGHER MODE BEHAVIOR

2.2.1. Model introduction and modal solution

The next step is to extend the model studied in the previous section to include higher
vibration modes. Consider a system of multiple Bernoulli}Euler beams interconnected by
elastic layers. Figure 2 shows a schematic of such a model consisting of n"3 beams.
As already pointed out in the introduction, the elements of this model should not be

viewed as a valid representation of physical track components. The model is used to get an
understanding of the observed phenomenon of forced vibrations at the cut-o! frequencies of
a waveguide. Many features observed in the experimental investigations presented and
discussed in section 4 can be explained using this simple model. Since only the behavior
close to the cut-o! frequencies, which implies large wavelengths, is of interest in this study,
Bernoulli}Euler beams are used instead of Timoshenko beams. This assumption is justi"ed
in greater detail later in this section.
The dynamic behavior of the model shown in Figure 2 is described by the set of

di!erential equations (14), where u
�
"u

�
(z, t) are the absolute downward displacements of
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Figure 2. Continuous multiple-mode model consisting of n"3 Bernoulli}Euler beams interconnected by elastic
layers.
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the three beams:

EI
�

0 0

0 EI
�

0

0 0 EI
�

u
�
u
�
u
� �����

#

�A
�

0 0

0 �A
�

0

0 0 �A
�

u
�

u
�

u
� ���

#

s
�

!s
�

0

!s
�
s
�
#s

�
!s

�
0 !s

�
s
�
#s

�

u
�
u
�
u
�

"0.

(14)

No damping is included in equation (14) yet in favor of modal damping, which will be
introduced at a later stage.
The set of equations (14) can be written in matrix notation as (15)

Bu
�����

#Mu
���

#Ku"0, (15)

where u is the displacement vector of the beams and K, M and B are the sti!ness coe$cient
matrix of the elastic connections, the mass matrix and the #exural sti!ness coe$cient matrix
of the beams. The "nal solution of the damped system will be derived stepwise from several
subproblems.
Considering the subproblem

Mu
���

#Ku"0, (16)

corresponding to the free vibration problem of the model cross-section and introducing
u"bei�� leads to an eigenvalue problem with eigenvalues �J �

�
and eigenvectors �

�
.

Assembling the eigenvectors according to equation (17) gives the modal matrix E � which
is scaled to meet the conditions (18):

E �"[�
�
,2, �

�
], (17)

E ��KE �"diag[�J �
�
,2, �J �

�
]"�� and E ��ME �"I. (18)

Themodal matrix E � is now used to transform the set of di!erential equations (15), giving

E ��BE �u������
#Iu����

#��u�"0, (19)

which can be solved considering steady state solutions u� of the form

u�"b�ei�	
 ��������, (20)
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where kJ (�) is the wavenumber of the undamped system. Introducing equation (20) into
equation (19) yields an eigenvalue problem with eigenvalues kJ

�
(�)� and eigenvectors �

	�
(�).

If the frequency is equal to one of the frequencies ��
�
calculated above, the rank of the

matrix (!��I#��) is reduced by one, implying that one of the eigenvalues kJ
�
(�) is zero

and the corresponding eigenvector �
	�
(�) equals �

�
. This means that the frequencies

�J
�
calculated from the free vibration problem of the cross-section [equation (16)] are the

cut-o! frequencies of the system and the vectors �
�
are the mode shapes of the respective

modes at those frequencies in analogy to the s.d.o.f. case.
Similarly, the eigenvectors �

	�
(�) are assembled into the frequency-dependent modal

matrix

E
	
(�)"[�

	�
(�),2, �

	�
(�)] (21)

where

E �
	
(�)(��!��I)E

	
(�)"diag[!kJ

�
(�)�,2, !kJ

�
(�)�],

and E �
	
(�)E ��BE �E 	 (�)"I. (22)

By applying the modal matrices E � and E
	
(�), the original set of di!erential equations can

be frequencywise decoupled, giving

E �
	
(�)E ��BE �E 	 (�)u

	�����
#E �

	
(�)E

	
(�)u

	���
#E �

	
(�)��E

	
(�)u

	
"0, (23)

which can be solved by introducing solutions of the form u
	
"b

	
ei�	��������. Within the

experimental investigation presented in section 4, the damping values of several modes are
measured at their cut-o! frequencies. The resulting quality factors are interpreted as
damping measures assigned to these modes. Motivated by this experimental consideration,
both hysteretic and viscous modal damping are introduced to the system at this stage as
shown below:

(k(�)�I#E �
	
(�)(��!��I)E

	
(�)

#i�diag[2(
kJ
�
(0)� 
/(�J

�
) �

�
]#i diag[kJ

�
(0)� 
�

�
])b

	
"0. (24)

The undamped wavenumbers kJ
�
at �"0 and the cut-o! frequencies ��

�
of each mode are

used to scale the damping matrices in order to use the same order of magnitude for the
damping parameters as in the previously studied case of the continuously supported
Bernoulli}Euler beam.
Solutions of the complex equation system (24) exist for the eigenvalues k

�
(�)�. The

corresponding eigenvectors �
	�
(�) are again assembled into the frequency-dependent modal

matrix

E
	
(�)"[�

	�
(�),2, �

	�
(�)]. (25)

Please note that the modal matrix E
	
(�) has been obtained after introducing modal

damping to the system, whereas E
	
(�) has been derived in the undamped case.

The "nal solution of the set of di!erential equations (15) including damping can be
expressed by its modal components as

u"E �E
	
(�)E

	
(�)(�

�
(z)�

�
#�

�
(z)�

�
#�

�
(z)�

�
#�

�
(z)�

�
)ei��, (26)
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where

�
�
(z)"diag[ei	�����], �

�
(z)"diag[e�i	�����],

�
�
(z)"diag[e�	�����], �

�
(z)"diag[e	�����]

and �
�
to �

�
are the modal coe$cient vectors.

2.2.2. Discretely supported multiple-mode model

With the mounting of the rail on sleepers at discrete intervals in mind, the in#uence of the
discrete support on higher vibration modes of a waveguide needs to be examined. For this
reason, the solution of the multiple-mode model on a discrete support is derived in this
section. Grassie et al. [6], among other authors, used the inter-element transfer matrix to
calculate the direct receptance of in"nitely long, discretely supported systems. The method
applied here is based on this concept.
The system of Figure 3 consisting of n"3 elastically connected beams can be divided

into an in"nite number of identical basic sections of length ¸"¸
�
#¸

�
consisting of two

unsupported parts of length ¸
�
/2 and a supported part of length ¸

�
between them as shown

in Figure 4.
The dimensionless state vector at the beginning of the rth section on the right side of the

excitation is de"ned as

v


"�

¸�

EI
�

F
�
,2,

¸�

EI
�

F
�
, �

�
,2, �

�
,

¸

EI
�

M
�
,2,

¸

EI
�

M
�
,
1

¸

y
�
,2,

1

¸

y
��

"S[F
�
,2, F

�
, �

�
,2, �

�
, M

�
,2,M

�
, y

�
,2, y

�
], (27)

where y
�
, �

�
, F

�
, M

�
are the displacement, the rotation, the shear force and moment at beam

i for a model consisting of n beams.
A transfer matrix T is introduced which relates the state vector v



at the beginning of the

section r with the corresponding vector v (r#1) of section (r#1) according to equation (28),

v
�
���

"Tv


. (28)

The transfer matrix T is composed of the transfer matrices C and D of the unsupported
and the supported subsections of the model respectively. Matrices C and D can be built up
using the modal solution (26) by relating the state vectors at both sides of the subsections
z

Unsupported
part

Supported
part

L1L2

Basic section

L

p

Beam 1

Beam 2

Beam 3s3

s1

s2

A1, I1

A2, I2

A3, I3

Figure 3. Multiple-mode model on discrete supports.
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vr

vr

L 1/2
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Figure 4. Basic section of discretely supported multiple-mode model and its transfer matrix representation.
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and thus eliminating the modal coe$cient vectors �
�
to �

�
(cf. Grassie et al. [6]). The

eigenvalues of T"CDC appear in inverse pairs (q
�
, 1/q

�
), corresponding to left and right

travelling waves respectively.
The relation

v���
�

"Hv���
�

(29)

is found by eliminating eigenvalues with moduli greater than unity. Equation (29) relates the
given values v���

�
(i.e., shear forces and beam rotations) and the unknown quantities v���

�
(i.e., displacements and moments) at the excitation point.

2.2.3. Discussion of model

The direct receptances of beam 1 of the continuously and discretely supported model are
shown in Figure 5. The models are excited with a harmonic point force at beam 3. The
parameters used in the calculation are chosen to give a realistic order of magnitude of the
static de#ection and of the lowest cut-o! frequency compared with the rail studied
experimentally (cf., Figure 9). The modal damping parameters of the continuously
supported model are set to �

�
"1/200 and �

�
"0, giving Q�-factors of 200 for all modes.

At the discretely supported model con"guration, the modal damping of the unsupported
parts (s

�
"0) is set to �

���
"1/800 and the damping parameters of the supported areas �

���
are adjusted to achieve Q�-factors of 200 of the overall system as well. This damping
distribution was chosen based on the expectation that system damping of a railway track
occurs mainly at the sleepers.
The set of model parameters shown in Table 1 was chosen based on these considerations.

It must be pointed out that the multiple-mode model is merely used to qualitatively study
and understand the higher mode behavior of a waveguide, and is not intended to exactly
reproduce the system response of an actual rail.
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Figure 5. Direct receptance at beam 1 of continuously (* - *) and discretely (**) supported multiple-mode
model with excitation force at beam 3.

TABLE 1

Parameter values of the unsupported, the continuously supported and the discretely supported
model con,guration

Notation Data Notation Data Notation Data

Flexural sti!ness (Nm�) EI
�

1)2E6 EI
�

1)7E6 EI
�

0)5E6
Mass per unit length (Kgm��) �A

�
15)0 �A

�
15)0 �A

�
15)0

Sti!ness coe$cient (Nm��) s
�

5)0E9 s
�

5)0E9

Additional parameters of the continuously supported model con,guration
Sti!ness coe$cient (Nm��) * * s

�
9)0E7

Modal damping �
�

5)0E3 �
�

5)0E3 �
�

5)0E3

Additional parameters of the discretely supported model con,guration
Length (m) ¸ 0)67 ¸

�
5)025E-1 ¸

�
1)675E1

Parameters of the unsupported model subsections
Sti!ness coe$cient (Nm��) * * s

���
0)0

Modal damping �
���

1)25E3 �
���

1)25E3 �
���

1)25E3

Parameters of the supported model subsections
Sti!ness coe$cient (Nm��) * * s

���
9)0E7

Modal damping �
���

5)0E3 �
���

1)62E2 �
���

1)12E2
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The direct receptances shown in Figure 5 of both model con"gurations show prominent
peaks at the cut-o! frequencies f

���
of all three modes (type I resonances). Only the "rst

cut-o! frequencies f
���

of the continuously and discretely supported model di!er noticeably.
The value for the support sti!ness presented in Table 1 was not adjusted so that the sti!ness
per unit length is not the same in the twomodels causing the di!erent cut-o! frequencies f

���
.

However, the cut-o! frequencies f
���

and f
���

at approximately 2910 and 5030 Hz,
respectively, are barely in#uenced by the type or the sti!ness of the support. Additional
amplitude maxima are observed in the discretely supported case, for example at
f
����

"957 Hz, f
����

"3024 Hz and f
����

"5148 Hz. In the studied numerical example, the
frequencies f

����
and f

����
are slightly higher than f

���
and f

���
, respectively. There are three

additional amplitude peaks of the discretely supported model between the frequencies



TABLE 2

Cut-o+ frequencies of the unsupported ( f
��
), the continuously supported ( f

���
) and the

discretely supported model con,guration ( f
���

and fII,(1,2,6)) and their relative deviations

2( f
���

!f
���
)/ 2( f

���
!f

��
)/ 2( f

���
!f

��
)/

f
���

f
���

( f
���

#f
���
) f

��
( f

���
#f

��
) fII,(1,2,6) ( f

���
#f

��
)

Mode (kHz) (kHz) (%) (kHz) (%) (kHz) (%)

1 0)112 0)224 66)556 0)000 * 0)957 158)047
2 2)909 2)919 0)339 2)906 0)111 3)024 3)887
3 5)033 5)035 0)045 5)033 0)005 5)148 2)261
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f
����

and f
����

which are not considered in further detail. All of these peaks are caused by
resonance e!ects of the periodic system and are called type II resonances throughout this
work. The "rst type II resonance at 957 Hz corresponds to the pinned}pinned frequency
often referred to in the literature. The system at the higher type II frequencies shows
a periodic motion according to the sleeper spacing with a cross-sectional deformation
similar to one of the mode shapes at its cut-o! frequency. More details regarding this
phenomenon are given in the discussion of Figure 6 later in this section.
The exact frequencies of the amplitude maxima are summarized in Table 2. The cut-o!

frequencies of the continuous model without support (s
�
"0) are included. Table 2 also

contains the relative deviations between the frequencies. Table 2 con"rms that the cut-o!
frequencies of higher modes are barely in#uenced by the presence or the type of the support
in the presented numerical example, where the sti!ness of the support is small compared
with the sti!ness of the connecting layers. With the rail mounted on sleepers and ballast in
mind, this assumption seems reasonable and is con"rmed by the experiments presented in
section 4. The presented example also shows that depending on support parameters such as
sleeper spacing, the frequencies of type II resonances of the discretely supported model can
be close to the cut-o! frequencies of the waveguide.
Figure 6 shows the beam displacements of the discretely supported model at the cut-o!

frequency f
���

and at type II resonance frequency f
����

which is adjacent. Hatched areas
beneath the displacement curve of beam 3 identify supported regions of the discretely
supported model.
The mode shape of mode 2 for both the discretely and the continuously supported model

is characterized by a 1803 out-of-phase movement of beams 1 and 3 and a small amplitude
at beam 2. This is observed at both presented frequencies of the discretely supported model.
However, the spatial behavior is completely di!erent. The type II response at f

����
shows no

localized vibration zone close to the excitation. The amplitude of the system response
decreases at the supported areas of the model and builds up again in the unsupported
regions. At the cut-o! frequency f

���
, a vibration zone of approximately 4}6 sleeper spacings

in extent is observed. Beyond this region, a wave is travelling with comparably small
amplitude. This type of system response showing a localized vibration zone close to the
excitation and a propagating wave further away is later referred to as the typical cut-o!
frequency behavior or type I response.
At a given excitation frequency, di!erent modes contribute to the total displacement of

the propagating waves with various degrees. This e!ect has been pointed out by Wu and
Thompson [8] and can be shown by plotting the actual contribution of each mode to the
beam displacement with increasing distance from the excitation. In Figure 7, the modal
contributions to the displacement of beam 1 is shown in the example of the continuously
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supported model. If the system is excited with the cut-o! frequency of a certain mode, the
displacement at the point of excitation is dominated by the mode shape of the respective
mode. The situation at some distance from the excitation has changed for higher modes.
The spatial decaying rate of the mode which is excited at its cut-o! frequency is high
comparedwith lower modes. This means that travelling waves of lower modes becomemore
and more important with increasing distance from the excitation.
With an excitation at the cut-o! frequency of a certain mode, these observations imply

that the behavior of the respective mode dominates the system response in the vicinity of the
excitation. This justi"es the use of Bernoulli}Euler beams instead of Timoshenko beams in
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the multiple-mode model, since the localized vibration zone close to the excitation is of
major importance for the examined application of train wheel detection.
The region of large vibration amplitude according to the mode shape of the excited mode

was called the localized vibration zone while discussing Figure 6. Let the quantity �z be
de"ned as


y
�
(z"�z/2) 
"
 (y

�
(z"0) 
e�� (30)

to quantitatively describe the size of the localized vibration zone.
Figure 8 shows the relation between the Q�-factor and the size of the localized vibration

zone �z for modes 2 and 3 of the continuously and the discretely supported multiple-mode
model. This illustrates that the localized vibration zone decreases with increasing damping
and with increasing frequency. The type of the support, continuous or discrete, has
a comparably small in#uence.

3. NUMERICAL CALCULATION OF CUT-OFF FREQUENCIES AND MODE SHAPES

Assuming that a linear theory of wave motion is applicable, and taking the z-direction as
the direction of propagation, plane waves with angular frequency � and wavenumber k of
the form

u (x, y, z, t)"ei�	�����u(x, y) (31)

are sought, where u(x, y, z, t) is the displacement vector of the rod. Rosenfeld and Keller [10]
studied waves of this type in rods of arbitrary cross-section. They obtained asymptotic
expansions of the exact solutions for both small and large values of the dimensionless
wavenumber (ka), where a is a typical dimension of the cross-section. In addition to four
modes propagating at low frequencies, also referred to as the lowest longitudinal, torsional
and #exural modes, there are in"nitely many other modes. These modes are referred to as
higher modes throughout this paper. Each of them has a cut-o! frequency �

���
below which

it cannot propagate. At the cut-o! frequency, the wavenumber is zero and the wavelength
tends to in"nity in the absence of damping and supports. To analyze these higher modes
near their cut-o! frequencies, Rosenfeld and Keller [10] expanded the displacement vector
u(x, y) and the phase velocity in powers of (ka). By using these expansions in the equations of
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Figure 9. Cross-section of studied rail type SBB I. Dimensions given in mm.

TABLE 3

Experimentally determined cut-o+ frequencies of symmetric modes and asymmetric modes.
Observed spatial behavior according to type I behavior with vibration zone �z (-), type II

vibration (?) or a combination of both response types (A)

Relative
Mode Calculated Measured deviation �z

(kHz) (kHz) (%) (m)

Symmetric modes
6 6)24 6)20? 0)6 *

7 11)57 11)58? 0)1 *

10 24)19 24)11A 0)3 *

12 26)69 27)64 3)6 *

13 32)52 31)69? 2)6 *

15 36)12 36)17? 0)1 *

18 42)61 42)69- 0)2 0)2
20 49)82 49)20- 1)2 0)1

Asymmetric modes
8 11)62 11)42- 1)7 0)4
9 17)12 16)98- 0)8 0)4
11 25)19 24)94- 1)0 0)3
14 35)70 35)77A 0)2 *

16 39)75 * * *

17 41)35 41)47- 0)3 0)25
19 44)67 45)06- 0)9 0)5
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motion and in the boundary condition, they obtained equations for the coe$cients in the
expansions. The modes were found to be of two types. The "rst type shows a mainly
longitudinal displacement.



Figure 10. Numerically calculated mode shape of the cross-section (boxed pictures; dark corresponds to no
motion) and measured mode shape between two sleepers at cut-o! frequency of mode 7 (foot excitation, graphs on
the left side of "gure) and mode 9 (head excitation, graphs on the right side of "gure) with excitation at z"0 m. The
following views are shown: top view of rail head, side view of rail head and web of rail and top view of railfoot. The
scaling of the measured mode shapes is given on the right side.

RAILWAY TRACK VIBRATION 1029
For the second type the displacement is primarily transverse. There are in"nitely many
modes of each type. Their cut-o! frequencies are the eigenvalues of two di!erent eigenvalue
problems associated with the cross-section. Because of experimental considerations
regarding both excitation and measurement, only transverse modes are considered here,
corresponding to the eigenvalue problem of the cross-section subjected to plane strain.
All experiments presented in Section 4 were carried out at a track with rails of the

Swiss-type SBB I. The geometry of this rail type is shown in Figure 9.
The higher vibration modes of this cross-section, if subjected to plane strain, were

calculated using a standard "nite element code (SDRC I-DEAS).
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Counting the torsional and the two #exural modes which exist at low frequencies as
discussed above as the "rst three modes with transverse motion, the "rst higher transverse
vibration mode is called mode 4. Although not explicitly referred to throughout the rest of
this paper, all discussed vibration modes are transverse modes. Mode 4 with a cut-o!
frequency of 1)46 kHz and mode 5 with a cut-o! frequency of 4)26 kHz are for experimental
reasons not examined any further, leaving a total of 15 higher modes of the studied rail type
in the de"ned frequency range from 5 to 50 kHz. The numerically calculated cut-o!
frequencies are listed in Table 3 and some typical mode shapes are depicted in Figure 10.
These results are discussed later with the experiments.

4. EXPERIMENTS

4.1. FREQUENCY SPECTRA AND MODE SHAPE MEASUREMENTS

The frequency spectrum and the mode shapes of the rail according to Figure 9 at their
cut-o! frequencies were experimentally examined in the frequency range from 5 to 50 kHz.
The studied test track was mounted on wooden sleepers and ballast. A scanning vibrometer
based on a heterodyne laser interferometer was used to measure the velocity at the surface
of the rail. The laser beam is de#ected using two built-in mirrors, thus allowing the vibration
measurement at each point of a de"ned grid. The mode shapes are calculated from the
recorded data at user-de"ned bands by performing a standard modal analysis based on the
fast Fourier transform (FFT).
Measurements of the mode shapes on top of the rail head, at the side of the rail head, at

the web of the rail and on top of the railfoot were performed. Figure 11 shows the
measurement grid used.
A periodic chirp signal was used to excite the rail. The total frequency range was divided

into intervals of 0}20, 20}30, 30}40 and 40}50 kHz in order to have su$cient signal energy
at each interval. Piezoelectric transducers with a small backing mass mounted at the center
of the railfoot beneath the rail and at the side of the rail head were used to excite symmetric
and asymmetric modes, respectively. Figure 12 illustrates the positions of the transducers.
The receiving transducers shown in Figure 12 are used for the damping measurements
discussed in section 4.2. Acting as high-pass "lters, the transducers produce a su$cient
excitation amplitude only when measuring at more then approximately 5 kHz.
The dynamic response of a rail measured at a single point shows a high degree of

complexity at frequencies above approximately 2 kHz (cf. reference [11]). However, the
amplitude maxima at the cut-o! frequencies can be made more visible by calculating the
average spectrum of several measurement points close to the excitation. Figure 13 shows the
average spectrum of the transfer function � between the voltage of the excitation signal and
the velocity measured at all points of the grid shown in Figure 11.
By looking at the mode shapes at frequency bands around the peaks in the averaged

spectra close to the numerically predicted cut-o! frequencies, the modes could be matched
with the calculated ones (Figure 13). Except for mode 16, all calculated higher modes in the
frequency range from 5 to 50 kHz could be located. The measured and the numerically
calculated mode shapes of modes 7 and 9 are presented in Figure 10. Additional observed
peaks are attributed to longitudinal modes or to the discrete supports.
Mode 7 is characterized by a vertical movement of the rail head and a symmetric #apping

vibration of the railfoot. The web of the rail at mode 9 is subjected to bending with a node at
the lower third of its height. Compared with mode 7, the node at the railfoot is closer to the
end. The head of the rail performs a rotating movement with a vibration node at the middle



Figure 11. Measurement grid used: top view of rail head (top picture), side view of rail head and web of the rail
(middle picture) and top view of railfoot (bottom picture). Excitation at z"0 m.
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of the running surface. Although the amplitude of this rotation is comparably small, it is
clearly visible in the measurement.
The behavior of these two modes along the rail direction is shown in Figure 14. The

vibration on top of the rail head of three adjoining rail}sleeper sections have been recorded
and connected to give a continuous picture.
The vibration of the rail head at mode 7 decreases at the sleepers and builds up again in

the following free section of the rail. This behavior corresponds to type II response observed
at the discretely supported multiple-mode model. It can be seen from the value ranges of
each of the three subsections that the overall spatial decay is modest at this mode.
Mode 9 shows a vibration zone of less than one sleeper spacing at the excitation. Beyond

this region a travelling wave can be observed. The amplitude at the vibration zone is
approximately four times larger compared with the wave which can be observed by looking
at the value ranges. The amplitude of the travelling wave at the second and the third span
stays more or less unchanged. This type of system response corresponds to the typical
cut-o! frequency behavior (type I behavior) predicted by the multiple-mode model.
The calculated and experimentally determined cut-o! frequencies and their relative

deviations are summarized in Table 3. The table also contains a classi"cation of the modes
according to their spatial behavior. The size of the vibration zone �z is included for modes
which show type I response.
The calculated and experimentally determined cut-o! frequencies agree within 4% and

more often even better than within 1%. This con"rms the statement derived from the
multiple-mode model that the type of support has a marginal in#uence on the cut-o!



Figure 12. Positions of sending and receiving transducers used for excitation of symmetric modes (�) and of
asymmetric modes (�).
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frequencies of higher vibration modes. The missing of the asymmetric mode 16 can be
explained by the unfavorable position of the exciting transducer, as the motion of the rail
head has a small amplitude in a mainly vertical direction for this mode. Seven modes show
the typical cut-o! frequency behavior with a localized vibration zone close to the excitation,
and a travelling wave occurring beyond this region. Type II behavior with a vibration
according to the corresponding mode shape which builds up at the free rail segments
between the sleepers is observed at four modes. All of these modes are symmetric modes.
Two modes show a combination of both e!ects with a vibration at the "rst and the second
span with an overlaying wave. No clear classi"cation was possible at mode 12 due to a small
amplitude at the rail head.
The size of the localized vibration zone �z of the modes with type I response varies

between approximately 0)1 and 0)5 m. Except for mode 19, a decreasing tendency of the
vibration zone �z is observed with increasing frequency. This is in agreement with the
predictions made by the multiple-mode model.

4.2. DAMPING MEASUREMENT

The quality factors of several modes have been determined by measuring the transfer
function �

�
( f ) from the sending to the receiving transducer at the corresponding cut-o!

frequencies (see Figure 12). The magnitude and phase response have been recorded using
a lock-in ampli"er by changing in a stepwise manner the excitation frequency close to the
cut-o! frequencies. A least-squares "t of the experimental data was performed in order to



Figure 14. Spatial behavior of modes 7 and 9 measured at the running surface over a distance of three sleeper spacings from the excitation at
z"0 m.
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estimate the parameters f
�
and a

�
to a

�
of the approximation functions (32) and (33):


�
�
( f ) 


�i�
"a

�
/(( f �

�
!f �)�#a

�
)#a

�
, (32)

arg(�
�
( f ) )

�i�
"a

�
arctan( a

�
/( f �

�
!f �))#a

�
. (33)

Figure 15 shows the normalized magnitude and phase response of modes 7 and
9 including the approximation functions.
The total phase change of mode 7 is close to 3�/4. This corresponds to the phase change

of a beam on a viscoelastic foundation as studied in section 2.1. The magnitude response of
mode 7 di!ers from an ideal response behavior, most speci"cally in regard to its symmetry.
An observed total phase change close to 1803 at mode 9 corresponds to the behavior of

a s.d.o.f. mechanical oscillator.
Using the approximation functions, the quality factors Q and QBW of six selected modes

have been determined by "nding the frequencies where the magnitude and phase have

changed by 1/�2 and $�/4 or by 1/��8 and $3�/16 compared with the values at the
cut-o! frequency. The classical Q-factor method was applied to modes which showed
a total phase change �� of approximately �; the Q�-factor was used for modes with phase
changes close to 3�/4. The quality factors obtained along with the observed total phase
changes�� are summarized in Table 4. The resulting time constants t

�	�
are also included in

the table.
Three of the studied modes show a total phase change �� between 1703 and 1803 which

can be regarded as classical resonance behavior. The Q-factor was determined for these
modes and evidenced values from the magnitude and the phase measurement which were
compatible within 4%.
The second group of modes has a total phase change �� between 135 and 1553. The

Q�-factor is more appropriate for characterizing the damping of these modes, and gives
quality factors from the magnitude and the phase measurement which were within
approximately 5% compatible. Applying the Q-factor method to these modes with phase
changes close to 1353gives quality factors frommagnitude and phase measurement di!ering
approximately 20}40%. The Q-factor values would be approximately 30% lower than the
obtained Q�-factors. This is caused by the fact that the Q-factor does not take into
account the fact that energy travels away from the excitation due to wave propagation.



TABLE 4

Quality factors from magnitude and phase of measured transfer functions and the resulting
reaction times t1/e

Quality factor from Relative
deviation t

�	�
Mode f

�
(kHz) �� (3) Magnitude Phase (%) (10�� s)

6 6)20 189 155)1- 156)3- 0)8 8)0
7 11)57 136 421)5? 403)0? 4)5 11)3
8 11)31 171 256)6- 247)3- 3)7 7)1
9 16)89 186 377)9- 376)5- 0)4 7)1

10 24)13 153 505)5? 531)8? 5)1 6)8
18 42)58 142 193)5? 192)4? 0)6 1)4

-Q-factor method used for modes with phase changes �� close to 1803.
?Q�-factor used for modes with phase changes �� close to 1353.
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The time constants t
�	�

of the mechanical system obtained from the Q-factors and
Q�-factors are of the order of a few milliseconds with a decreasing tendency towards
higher frequencies. The time constant corresponds to the reaction time of the sensor. A train
wheel travelling at a velocity of 150 km/h needs 9)6 ms to pass a local vibration zone of 0)4
m in extent. This passing time is close to the time constants found, and means that measures
must be taken in order to ensure a reliable axle detection. The time constant of the
mechanical system could be improved by adding additional damping at the localized
vibration zone.
The presented damping measurements also raise some open questions which are

discussed in the following section.
The multiple-mode model gave phase changes of the receptance of less than �/4 for type

II resonances caused by the discrete support. Although some of the experimentally
investigated modes show the typical spatial behavior of these type II resonances, no total
phase changes of less then 3�/4 have been found. No clear connection between the spatial
behavior of the modes and the observed total phase change could be found. Modes 8 and 9,
which showed the typical type I behavior, have phase changes close to 1803 instead of 1353
as would be expected. The total phase change of mode 6 showing type II spatial behavior is
1803 and mode 7, also with type II behavior, has a total phase change of 1353. The reason
why the observed range of phase changes is limited by 1353 and 1803 is currently not
understood and further investigation is needed, with a possible explanation being
a superposition of type I and type II behavior resulting from the high density of type II
resonance frequencies.

5. CONCLUSIONS

The forced vibration response of a railway track which is excited at its higher cut-o!
frequencies has been examined theoretically, numerically and experimentally.
The behavior of higher modes at their cut-o! frequencies in a waveguide has been studied

using a model consisting of several elastically connected beams includingmodal damping. It
has been shown that a local vibration zone near the excitation exists in the presence of
system damping. The size of this vibration zone is controlled by damping and frequency.
The intention is to use this vibration zone within a sensing device to detect passing train
wheels. Additional resonance e!ects originating from the periodic support exist and are
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referred to as type II vibrations. Depending on support parameters such as sleeper spacing,
these type II resonance frequencies can occur close to the cut-o! frequencies of the
waveguide. In this case, the cross-sectional mode shape close to the excitation of type II
vibration is similar to the mode shape at the corresponding cut-o! frequency. However,
type II vibrations show no localized vibration zone and are therefore not suitable for
single-wheel detection.
The cut-o! frequencies and mode shapes of the rail type at which the experiments were

carried out have been numerically predicted by solving the eigenvalue problem of the rail
cross-section subjected to plane strain. It was possible to measure 14 of 15 higher vibration
modes in the frequency range from 5 to 50 kHz. The experiments showed that the calculated
and measured cut-o! frequencies and mode shapes correspond well, close to the excitation.
The typical cut-o! frequency behavior with a local vibration zone close to the excitation has
been observed for the majority of the measured modes. Some modes, however, showed
a vibration according to the respective mode shape building up between several
neighboring sleepers and small amplitudes at the sleepers. This corresponds to type II
vibration behavior. The observed overall spatial decay of these vibrations is modest, and is
as such in agreement with the model predictions.
The damping of several modes has been determined by measuring the quality factors

from the amplitude and the phase response of the rail. Two types of responses have been
experimentally observed. A "rst group of modes showed a total phase change of close to
� and a second group showed phase changes close to 3�/4. Motivated by the analytical
model of a beam on a viscoelastic foundation, an adopted measurement method referred to
as Q�-factor has been applied to the latter group of modes. No clear connection between
the spatial behavior of the modes and their phase response could be established.
The following consequences can be drawn regarding the technical application of local rail

vibrations.
It is possible to experimentally "nd and stabilize speci"c rail modes. However, due to the

high density of amplitude peaks observed at a single measurement point, it is necessary to
have multiple receiver signals in order to be able to distinguish between di!erent vibration
modes. These transducers would be mounted advantageously at several positions along the
rail contour in order to "nd the characteristic motion of a certain vibration mode. Modes
which show a type II response with no local vibration zone are not suitable for the detection
of single train wheels. These modes can be excluded by mounting an additional receiver at
the rail span next to the excitation.
The reaction times resulting from the damping measurement are close to the time which

a wheel of a fast travelling train needs to pass the local vibration zone. In order to ensure
a reliable wheel detection, the mechanical time constant of the rail vibration could be
improved by adding extra damping to the local vibration zone.
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